NEXCO EAST และบริษัททางด่วนของ Grid Japan ประสบความสำเร็จในการพัฒนาเทคโนโลยีแรกในการทำนายความแออัดของการจราจรในช่วงเวลาที่การจราจรคับคั่งโดยใช้ AI!
- เทคโนโลยีพยากรณ์การจราจรติดขัดในระยะยาวหลายเดือนข้างหน้าคล้ายกับนักพยากรณ์การจราจรติดขัดโดยใช้ AI-
- Corporate Top
- ห้องข่าวสารประชาสัมพันธ์
- สำนักงานใหญ่แถลงข่าว
- NEXCO EAST และบริษัททางด่วนของ Grid Japan ประสบความสำเร็จในการพัฒนาเทคโนโลยีแรกในการทำนายความแออัดของการจราจรในช่วงเวลาที่การจราจรคับคั่งโดยใช้ AI!
21 ธันวาคม 2018
บริษัท ทางด่วนตะวันออก จำกัด
บริษัท กริด จำกัด
บริษัท ทางด่วนตะวันออก จำกัด (ต่อไปนี้คือ NEXCO EAST) และ บริษัท กริด จำกัด (ต่อไปนี้เป็น Grid) ใช้ AI ในการพัฒนาเทคโนโลยีที่ช่วยให้นักจราจรติดขัดเพื่อพยากรณ์การจราจรติดขัดในอีกหลายเดือนข้างหน้า ได้สำเร็จ
Grid เป็น บริษัท ร่วมทุนด้านเทคโนโลยีที่มีหนึ่งในเทคโนโลยี AI ชั้นนำในญี่ปุ่นและแพลตฟอร์มการพัฒนา AI "ReNom" ที่สามารถตอบสนองต่อปัญหาต่าง ๆ ที่พัฒนาและจัดหาโดย Grid※และด้วยการใช้เทคโนโลยีการทำนายความแออัดของ NEXCO EAST เราได้พัฒนาแบบจำลองการทำนายที่เทียบเท่ากับเครื่องพยากรณ์การจราจร จากการเปรียบเทียบแบบจำลองการทำนายนี้กับผลลัพธ์ของการจราจรติดขัดในช่วงที่มีการจราจรติดขัดเราสามารถยืนยันระดับความแม่นยำที่แน่นอนและกำหนดขั้นตอนสำหรับการใช้งานจริง
1 การทำนายปริมาณการจราจร
การคาดการณ์สภาพการจราจรติดขัดเช่นช่วงเวลาที่มีการจราจรติดขัดและปฏิทินที่มีความแออัดซึ่งเป็นเวลามากกว่าสองสามเดือนข้างหน้าสามารถทำได้โดยนักพยากรณ์ความแออัดซึ่งก่อนหน้านี้เคยรับผิดชอบงานพยากรณ์ความแออัดของ NEXCO EAST มีการตัดสินใจและคาดการณ์หลังจากพิจารณาสถานการณ์ของเหตุการณ์
แบบจำลองการพยากรณ์ความแออัดโดยใช้ AI เรียนรู้ข้อมูลปัจจัยในอดีตที่น่าจะส่งผลกระทบอย่างมากต่อการเกิดความแออัดและทำนายว่าจะเกิดความแออัดหรือไม่ในวันและเวลาในอนาคต
การพัฒนานี้มีจุดมุ่งหมายที่ทางด่วน Kan-Kan-Etsu Expressway และมีการใช้ข้อมูลจำนวนมากจาก [1] ถึง [2] ต่อไปนี้เป็นเวลาประมาณ 14 ปีตั้งแต่ปี 2547 ถึง พ.ศ. 2561 เพื่อการเรียนรู้ เมื่อเรียนรู้ ข้อมูลครูจะถูกสร้างขึ้นโดยการรวมความรู้ในการทำนายความแออัดของ NEXCO EAST เข้ากับเทคโนโลยีวิศวกรรมแบบจำลองกริด
[1] ข้อมูลความเร็วและปริมาณการจราจรทุก 5 นาทีที่ได้รับจากอุปกรณ์ที่เรียกว่าตัวนับการจราจร
[2] รูปแบบปฏิทินในแต่ละปี (การจัดวันในสัปดาห์ การจัดวันหยุด ฯลฯ)
- แพลตฟอร์มการพัฒนา AI ที่ให้คุณสร้างอัลกอริธึมขั้นสูงได้อย่างอิสระเช่นการเรียนรู้เชิงลึกตามภารกิจและสำหรับงานง่าย ๆ แม้ว่าคุณจะไม่ใช่ผู้เชี่ยวชาญคุณสามารถพัฒนาแบบจำลองด้วยอินเตอร์เฟส GUI โดยไม่ต้องเขียนโปรแกรม .
[ข้อมูลอ้างอิง] การคาดการณ์ปริมาณการใช้โดยผู้พยากรณ์การจราจร
การพยากรณ์การจราจรติดขัดที่ดำเนินการโดยนักพยากรณ์การจราจรติดขัดแบ่งออกเป็นงานต่อไปนี้ [1] ถึง [4]
- [1] ผลการจราจรติดขัดในอดีตที่ทับซ้อนกัน (เป็นเวลา 3 ปี)
- [2] การตรวจสอบผลลัพธ์การจราจรติดขัดในอดีต
- [3] การเพิ่มแนวโน้มการเข้าชมล่าสุด
- [4] งานแก้ไข (รวมการจราจรที่ติดกันเข้าด้วยกันโดยพิจารณาถึงผลกระทบต่อเส้นทางเชื่อมต่อ)
2 ความแม่นยำของการพยากรณ์ความแออัดของการจราจรโดย AI
เมื่อการคาดการณ์ปริมาณการใช้ (GW, Obon) บน Kan-Etsu Expressway ในปีนี้ถูกเปรียบเทียบกับการคาดการณ์ปริมาณการใช้จริงโดย AI และพยากรณ์การจราจรอัตราพลาดของการคาดการณ์※อัตราที่ไม่ได้รับ※ทั้งสองมีประมาณ 20% และได้รับการยืนยันว่าการทำนายเป็นไปได้ด้วยความแม่นยำเกือบเท่ากับการทำนายโดยผู้พยากรณ์การจราจรติดขัด
H30GW | ถาด H30 | |||
---|---|---|---|---|
ไม่มีอัตรา | ไม่มีอัตรา | ไม่มีอัตรา | ไม่มีอัตรา | |
ผู้พยากรณ์ | ยี่สิบห้า% | 20% | 19% | 11% |
AI | ยี่สิบสี่% | 20% | 20% | 9% |
- อัตราพลาด:“ จำนวนครั้งที่พลาด (คาดการณ์ว่าจะไม่มีการจราจรติดขัดเกิดขึ้น แต่จำนวนการจราจรติดขัดจริงที่เกิดขึ้น”) /“ จำนวนการจราจรติดขัดทั้งหมด”
อัตราที่ขาดหายไป:“ จำนวนเหตุการณ์ที่ไม่ได้รับ (จำนวนการจราจรที่ติดขัดที่คาดการณ์ไว้ซึ่งคาดการณ์ว่าจะเกิดการจราจรติดขัด แต่ไม่ได้เกิดขึ้นจริง)” /“ จำนวนการคาดการณ์การจราจรติดขัดทั้งหมด”
นอกจากนี้เมื่อเปรียบเทียบการคาดการณ์การจราจรติดขัดสำหรับวันหยุดสิ้นปีและปีใหม่ของ Kan-Etsu Expressway ในปีนี้การเปรียบเทียบการพยากรณ์อากาศโดย AI และการพยากรณ์การจราจรโดยพยากรณ์การจราจรจะถูกนำมาเปรียบเทียบและประมาณ 80% แสดงแนวโน้มเดียวกัน
<< ตัวอย่างการพยากรณ์ [1] >> สายขึ้น Kan-Etsu Expressway มกราคม (วันพุธ) เปรียบเทียบการพยากรณ์ AI และพยากรณ์พยากรณ์
<< ตัวอย่างการพยากรณ์ [2] >> สายขึ้น Kan-Etsu Expressway วันที่ 3 มกราคม (วันพฤหัสบดี) เปรียบเทียบการพยากรณ์ AI กับการพยากรณ์ของนักพยากรณ์
3 การพัฒนาในอนาคตของการพยากรณ์ความแออัดของการจราจรโดยใช้ AI
- เทคโนโลยีที่พัฒนาในครั้งนี้สามารถนำไปใช้กับที่อื่นนอกเหนือจาก Kan-Etsu Expressway เป้าหมายในอนาคตเราจะศึกษาเส้นทางอื่น ๆ เช่น Tohoku Expressway และมุ่งหวังที่จะ การขยายตัว เส้นทางเป้าหมาย
- ในเวลานี้มันเป็นเรื่องยากสำหรับนักพยากรณ์การจราจรที่จะคาดการณ์จากการเปลี่ยนแปลงของสภาพถนนและระบบโทรดังนั้นในการพยากรณ์การจราจรเราจะใช้นักพยากรณ์การจราจรเพื่อช่วยในการคาดการณ์เช่นการดูแล
- หากความแม่นยำของการพยากรณ์การจราจรติดขัดโดย AI จะได้รับการปรับปรุงเพิ่มเติมในอนาคตและความร่วมมือกับระบบการทำนายแบบเดิมจะทำให้ผู้พยากรณ์การจราจรติดขัดจะใช้เวลาทำงานมากเช่น [1] งานซ้อนทับและ [4] คาดว่าจะสั้นลงและงานพยากรณ์ความแออัดจะลดลงครึ่งหนึ่ง
- ในอนาคตเราจะตรวจสอบความเป็นไปได้ของข้อมูลการเรียนรู้ใหม่เช่นข้อมูลสภาพอากาศและสถานะการเกิดอุบัติเหตุและมุ่งมั่นที่จะปรับปรุงความแม่นยำต่อไป
ในการดูไฟล์ PDF คุณต้องมีซอฟต์แวร์ปลั๊กอิน Adobe Systems "Acrobat Reader (เวอร์ชั่นภาษาญี่ปุ่น)" หากคุณไม่มีดาวน์โหลดที่นี่ (ฟรี)โปรดใช้มัน